Electro-proportional, direct-acting, pressure reducing/relieving valve with open transition (740 Series)

Capacity: 5 gpm20 L/min. | Cavity: T-11A
PRDF : Electro-proportional, direct-acting, pressure reducing/relieving valve with open transition (740 Series)
Technical Features [ + ]

This electro-proportional, direct-acting reducer/reliever valve reduces a high primary pressure at the inlet (port 2) to a constant reduced pressure at port 1, with a full flow relief function from port 1 to tank (port 3). The valve is biased to the relieving mode. Energizing the coil connects port 2 to port 1. Increasing the current to the coil will proportionally increase the reduced pressure at port 1. If pressure at port 1 exceeds the setting induced by the coil, pressure at port 1 is relieved to port 3. This valve is open in the transition from reducing to relieving. It provides good pressure control and dynamic response. Optional full manual control is available.

This valve is designed to be used with 740 and 747 Series coils.

  • Maximum pressure at port 3 should be limited to 3000 psi (210 bar).
  • The transition from reducing to relieving is slightly open. The result is very good pressure control with oil consumption of about 0.1 gpm (0,4 L/min.). The relatively high pilot control flow is only a factor in a dead-headed condition.
  • Pressure at port 3 is directly additive to the valve setting at a 1:1 ratio and should not exceed 3000 psi (210 bar).
  • For optimum performance, an amplifier with current sensing and adjustable dither should be used. Dither should be adjustable between 100 - 250 Hz.
  • NOTE: There is no upper limit to the pressure setting when using the M control. The more force you exert on the manual override, the higher the resulting pressure.
  • Full reverse flow from reduced pressure (port 1) to inlet (port 2) may cause the main spool to close. If reverse free flow is required in the circuit, consider adding a separate check valve to the circuit.
  • Fully compatible with the XMD Expandable Mobile Drivers from Sun.
  • Direct acting concept provides highly reliable operation in contaminated systems, especially at dead headed conditions.
  • All three-port pressure reducing and reducing/relieving cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size). When considering mounting configurations, it is sometimes recommended that a full capacity return line (port 3) be used with reducing/relieving cartridges.
  • Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.
Technical Data [ + ]
Note: Data may vary by configuration. See CONFIGURATION section.
Cavity T-11A
Series 1
Capacity 5 gpm20 L/min.
Maximum Operating Pressure 5000 psi350 bar
Maximum Valve Leakage at 110 SUS (24 cSt) 33.5 in³/min.550 cc/min.
Solenoid Tube Diameter .63 in.16 mm
Valve Hex Size 7/8 in.22,2 mm
Valve Installation Torque 30 - 35 lbf ft41 - 47 Nm
Model Weight (with coil) 1.20 lb0,55 kg
Seal kit - Cartridge Buna: 990511007
Seal kit - Cartridge Viton: 990611006
Seal and nut kit - Coil Viton: 990740006
Proportional Performance Data [ + ]
Note: Data may vary by configuration. See CONFIGURATION section.
Hysteresis (with dither) 6%6%
Hysteresis with DC input <8%<8%
Linearity (with dither) <2%<2%
Repeatability (with dither) <2%<2%
Recommended dither frequency 140 Hz140 Hz
Performance Curves [ + ]
FAQs [ + ]

There are exactly 250 Sun drops in a cubic inch or 15 in a cc.

Direct-acting valves are used to prevent over pressure, and pilot-operated valves are used to regulate pressure. If you are unsure, use a direct-acting valve. Sun's direct acting valves are very fast, dirt tolerant, stable, and robust. Sun's pilot-operated valves are moderately fast, they have a low pressure rise vs. flow curve, and they are easy to adjust.

Yes. A reducing or reducing/relieving valve is normally open. If the pressure in the secondary circuit is less than the setting, it will be open.

2 caveats: (1) If the valve is in the reducing mode and you suddenly reverse the flow, the valve will not have time to open and will shift into relieving mode or (2) If the back flow generates a pressure drop through the valve that exceeds the setting, the valve will shift into the relieving mode.

When in doubt, use a reverse flow check.

Pressure setting tolerances are listed in our Performance Data page. A link to this page can also be found in the Additional Resources tab of the applicable product page.

Yes. If you look in the sandwich section you will see that we offer many such packages. When you are pressurizing B, A is connected to tank, allowing the reducer to do its job. When you reverse, the drain or tank port of the reducer is pressurized by A. This increases the setting of the reducer and helps keep the reducer open in the reverse flow direction.

Our reducing valves are outside-in valves; the supply pressure on the outside of the working parts is higher than the inside. At some pressure differential, the outside (sleeve) will close in on the piston and cause the valve to stick. A D range is adjustable from 25 to 800 psi with a maximum differential of 2000 psi. This means you could set the valve at 600 psi and expect it to work correctly with a supply pressure of 2600 psi. The valve may work at higher differentials, but we do not recommend it. The W and C ranges are tested over their entire range with an inlet pressure of 5000 psi. All direct-acting valves are tested with an inlet pressure of 5000 psi.

No. A reducing/relieving valve throttles a supply of oil to maintain a set pressure in a secondary circuit. The valve is open until the secondary or downstream pressure rises to the setting of the valve at which time it starts to close to limit the pressure. If the secondary or downstream pressure is caused to go above the setting, the valve shifts into relieving mode and throttles the secondary circuit back to tank to prevent over-pressure. At no time can the valve connect the supply to tank.

Only external seals are serviceable.  Sun offers replacement seal kits for all cartridge models. The applicable kit part number can be found in the product page's Technical Data table or by using our Cartridge Seal Kit search function located under Accessories. Please note: Converting the external seals from one material to another does not ensure fluid compatibility with that material due to the existence of internal seals within the cartridge.
Notes [ + ]
  • Please verify cartridge clearance requirements when choosing a Sun manifold. Different valve controls and coils require different clearances.
  • An additional 2.00 inches (50,8 mm) beyond the valve extension is needed for coil installation and removal.
Additional Resources [ + ]
Coil Information [ + ]

No coil selected.